lunes, 19 de marzo de 2012

Mol
El mol (símbolo: mol) es la unidad con que se mide la cantidad de sustancia, una de las siete magnitudes físicas fundamentales del Sistema Internacional de Unidades.
Dada cualquier sustancia (elemento químico, compuesto o material) y considerando a la vez un cierto tipo de entidades elementales que la componen, se define como un mol a la cantidad de esa sustancia que contiene tantas entidades elementales del tipo considerado, como átomos hay en 12 gramos de carbono-12. Esta definición no aclara a qué se refiere con cantidad de sustancia y su interpretación es motivo de debates,[1] aunque normalmente se da por hecho que se refiere al número de entidades, como parece confirmar la propuesta de que a partir del 2011 la definición se base directamente en el número de Avogadro (de modo similar a como se define el metro a partir de la velocidad de la luz).[2]
El número de unidades elementales –átomos, moléculas, iones, electrones, radicales u otras partículas o grupos específicos de éstas– existentes en un mol de sustancia es, por definición, una constante que no depende del material ni del tipo de partícula considerado. Esta cantidad es llamada número de Avogadro (NA)[3] y equivale a:



Dado el tamaño extremadamente pequeño de las unidades fundamentales, y su número inmensamente grande, es imposible contar individualmente las partículas de una muestra. Esto llevó a desarrollar métodos para determinar estas cantidades de manera rápida y sencilla.
Si tuviésemos que crear una unidad de cantidad de sustancia hoy en día, seguramente se utilizaría la "Tera-partícula" (1012 partículas) o algo similar. Sin embargo, dado que el mol se ha definido hace ya tiempo y en otro contexto de investigación, se han utilizado diferentes métodos. El primer acercamiento fue el de Joseph Loschmidt, intentando contabilizar el número de moléculas en un centímetro cúbico de sustancias gaseosas bajo condiciones normales de presión y temperatura.
Los químicos del siglo XIX usaron como referencia un método basado en el peso y decidieron utilizar unos patrones de masa que contuviesen el mismo número de átomos o moléculas. Como en las experiencias de laboratorio se utilizan generalmente cantidades del orden del gramo, definieron los términos átomo-gramo, molécula-gramo, fórmula-gramo, etc. Actualmente estos términos no se usan y han sido sustituidos por el mol.
Más adelante el mol queda determinado como el número de moléculas H2 existentes en dos gramos de hidrógeno, lo que da el peculiar número de 6,022 141 79 (30) × 1023 al que se conoce como número de Avogadro.
Además hay que tener claro que esta fórmula se usa sólo cuando nos pidan calcular cierta cantidad de algo que compone un elemento.
-      Un mol de moléculas H2 equivale a 2 gramos de hidrógeno, un mol de átomos H será entonces un gramo de este elemento. O sea que en un gramo de hidrógeno hay 6,02214179 (30) × 1023 átomos.
Para evitar ambigüedades, en el caso de sustancias macroelementales conviene por lo tanto indicar, cuando sea necesario, si se trata de átomos o de moléculas. Por ejemplo: "un mol de moléculas de nitrógeno" (N2) equivale a 28 g de nitrógeno. O, en general, especificar el tipo de partículas o unidades elementales a que se refiere.
El mol se puede aplicar a las partículas, incluyendo los fotones, cuya masa es nula. En este caso, no cabe establecer comparaciones basadas en la masa.
En los compuestos iónicos también puede utilizarse el concepto de mol, aun cuando no están formados por moléculas discretas. En ese caso el mol equivale al término fórmula-gramo. Por ejemplo: 1 mol de NaCl (58,5 g) contiene NA iones Na+ y NA iones Cl, donde NA es el número de Avogadro.
Por ejemplo para el caso de la molécula de agua
  • Se sabe que en una molécula de H2O hay 2 átomos de hidrógeno y un átomo de oxígeno.
  • Se puede calcular su Mr(H2O) = 2 × Ar(H) + Ar(O) = 2 × 1 + 16 = 18, o sea Mr(H2O) = 18 uma.
  • Se calcula la masa molecular absoluta = 18 × 1,66 × 10-24g = 2,99 × 10-23g.
  • Se conoce su masa molar = M(H2O) = 18 g/mol (1 mol de H2O contiene 18 g, formados por 2 g de H y 16 g de O).
  • En un mol de agua hay 6,02214179 (30) × 1023 moléculas de H2O, a la vez que:
  • En un mol de agua hay 2 × 6,02214179 (30) × 1023 átomos de H (o sea 2 moles de átomos de hidrógeno) y 6,02214179 (30) × 1023 átomos de O (o sea 1 mol de átomos de oxígeno).
Sus equivalencias:
  • 1 mol de alguna sustancia es equivalente a 6,02214179 (30) × 1023 unidades elementales.
  • La masa de un mol de sustancia, llamada masa molar, es equivalente a la masa atómica o molecular (según se haya considerado un mol de átomos o de moléculas) expresada en gramos.
  • 1 mol de gas ideal ocupa un volumen de 22,4 L a 0 °C de temperatura y 1 atm de presión; y de 22,7 L si la presión es de 1 bar (0,9869 atm).
  • El número n de moles de átomos (o de moléculas si se trata de un compuesto) presentes en una cantidad de sustancia de masa m, es:
donde M es la masa atómica (o molecular, si se trata de un compuesto).

Nomenclatura de UIQPA
 La UIQPA (Unión Internacional de Química Pura y Aplicada). A algunos compuestos se les asigna un nombre común o trivial. A los elementos con número de oxidación positivo se les llama cationes y a los que tienen número de oxidación negativo aniones. Cuando se unen dos o más átomos la especie se llama radical químico y su número de oxidación es la suma algebraica de los números de oxidación de cada elemento. Al escribir la fórmula de un compuesto se acostumbra poner primero el símbolo del componente que posee el número de oxidación y para nombrarlos se emplea primero el nombre del radical negativo.
Las fórmulas de los compuestos se clasifican por el número de elementos que las forman en:

Binarios: Se componen de dos elementos diferentes.

Ternarios: Se componen de tres elementos diferentes.

Poliatómicos: Se componen de más de tres elementos.

Uso de la notación E/Z en la nomenclatura de alquenos.

En algunos casos la nomenclatura cis/trans no se puede usar por ejemplo en el caso de 1-cloro-1-fluor-1-propeno ¿cual de los dos halógenos se considerará para decir si es cis o trans?

La IUPAC consideró una serie de reglas de prioridad para resolver estos casos e introdujo la nomenclatura E / Z . De esta forma siguiendo las reglas se le da prioridad de los grupos en ambos lados de la doble ligadura y el nombre considerará la mayor prioridad de estos grupos.:

Reglas para la asignación de E o Z. 

  1. Cada extremo de la doble ligadura se considera por separado. 
  2. La primer condición es que los dos grupos en cada extremo sean diferente si esto se cumple se les asigna orden de prioridad
  3. Se usa la notación E ( del aleman Entgegen, separado) cuando el compuesto tiene los dos grupos de mayor prioridad opuestos sobre la doble ligadura
  4. Se usa la notación Z ( del alemán zusammen, juntos) cuando el compuesto tiene los dos grupos de mayor prioridad del mismo lado de la doble ligadura. 
Tres cientificos decidieron establecer una serie de reglas para la prioridad de los grupos y se conocen como las reglas de Cahn-Ingold-Prelog:
Reglas de Cahn-Ingold-Prelog para la asignación de prioridad de grupos en estereoquímica. 

  1. Los grupos que se van a priorizar se comparan átomo por átomo empezando por los átomos conectados al sitio del estereoisomerismo, en este caso los átomos de la doble ligadura. 
  2. Los átomos comparados se acomodad en base a su número atómico. Los de mayor número atómico tienen mayor prioridad. Asi tendremos en orden de mayor a menor prioridad: I, Br, Cl, F, O, N, C, H. 
  3. Si los átomos comparados tienen el mismo número atómico, pero difieren en masa ( son isótopos) La prioridad está en base al incremento de número de masa. Asi tenemos en orden de mayor a menor prioridad: T, D, H. (i.e. 3H, 2H, 1H). 
  4. Si dos átomos son iguales nos movemos a lo largo de la cadena del centro estereoquímico hacia afuera comparando átomo por átomo hasta encontrar alguna diferencia. Asi tendríamos en orden decreciente de prioridad: BrCH2-, FCH2-, HOCH2-, CH3CH2-, CH3-. 
  5. Para uniones múltiples, considerar cada unión como conexión individual al siguiente átomo: 
:
  • No se deben de usar simultaneamente los dos métodos de nomenclatura el cis/trans y el E/Z

Tipos de fertilizantes
Son sustancias químicas que se utilizan en los cultivos con el fin de garantizar una buena producción, en un lapso de tiempo y buscar una buena calidad en el producto cultivado, es por ello que los agricultores y los técnicos especialistas en el ramo deben ser conscientes y usar dichos químicos de forma adecuada pues su mal uso ocasiona daños a nuestros suelos, el agua, el aire; en pocas palabras daña al ambiente en que vivimos.
Como todos sabemos, el ser humano es el principal causante de la contaminación del medio ambiente… ¿por qué no tomar conciencia? Y hacer de nuestro mundo el mejor, libre de contaminación tanto del agua, el aire, el suelo, en pocas palabras de todo lo que nos rodea. Esta contaminación se debe a muchos factores entre ellos el mal uso de fertilizantes químicos el cual daña nuestros suelos, nuestro aire y el agua a pesar de que proporciona nutrientes a las plantas que en muchos casos consumimos.

Los fertilizantes pueden clasificarse de distinta maneras, ya sea según su origen ( inorgánicos e orgánicos ), composición (puros y compuestos) o característica (líquidos y sólidos) y usos a los que están destinados.
La adecuada elección dependerá de:
La fertilidad del suelo y su nivel de salinidad.
Cantidad de agua disponible.
-Condiciones climatológicas.
Tamaño de la especie vegetal.
Tipo de planta: examinar si es cultivada por sus hojas o sus flores; su época de floración (antes o después de las hojas); su estructura y resistencia (si son quebradizas o están expuestas a vientos fuertes); su edad.

Los fertilizantes inorganicos pueden ser de origen natural extraídos de la tierra, como el nitrato (de Chile) o bien sintéticos elaborados por el hombre.
Las plantas no distinguen entre procedencia natural o sintética, y ambos se descomponen antes de ser absorbidos.
Generalmente los de este tipo son de acción rápida y estimulan el crecimiento y vigor de las plantas cuando se aplican sobre la superficie.
En el mercado se pueden encontrar una serie de marcas que distribuyen distintos tipos de fertilizantes con un nombre comercial. Lo importante al momento de elegir, es fijarse en el contenido de nutrientes que aporta cada fertilizante,expresado en porcentaje. Así por ejemplo un fertilizante cuya composición es 8-16-16, significa que aporta un 8% de N, 13% de P (P2O5) Y 16% de K (K2O).


Los fertilizantes organicos pueden ser de origen animal (guano) o vegetal (compost, abonos verdes). La mayoría son de acción lenta, pues proporcionan nitrógeno orgánico que debe ser transformado en inorgánico por las bacterias del suelo antes de ser absorbido por las raíces. Como estos organismos no actúan en suelos fríos, ácidos o empapados, su efectividad y rapidez de acción dependerá del terreno.
Con estos fertilizantes no es tan fácil que se quemen las hojas como con los inorgánicos y efectúan un suministro continuo de alimento a las plantas por mucho tiempo, pero resultan más caros.
Los fertilizantes orgánicos pueden ser de origen animal o vegetal.

Los fertilizantes simples están formados por un solo ingrediente activo. Generalmente contiene un solo alimento vegetal básico o pequeñas cantidades de otros (como la harina de huesos).
· Los fertilizantes compuestos están formados por mezclas de ingredientes activos, y generalmente contienen los 3 nutrientes vegetales principales. Muchos de ellos contienen al mismo tiempo fuentes de sustancias nutritivas de acción rápida y lenta, lo que les permite mantener su acción nutritiva por más tiempo.
Tipos de Sales
SALES DE HIDRÁCIDOS

ÁCIDO + HIDRÓXIDO
  ÁCIDO CLORHIDRICO + HIDRÓXIDO DE SODIO = SAL + AGUA
HCL + NaOH --------> CLNa + H2 O
Cloruro de Sodio + Agua

SALES DE OXOACIDOS

OXOÁCIDO + AGUA
ÁCIDO NITROSO + HIDRÓXIDO DE POTASIO = SAL + AGUA
NO2H + K0H -----------> NO2K + H2O
Nitrito de Potasio + Agua
ACIDO NITRICO + HIDROXIDO DE POTASIO = SAL + AGUA
HNO3 + KOH ----------->  KNO2 + H2O
Nitrato de Potasio
 
SALES NEUTRAS, ÁCIDAS, BÁSICAS Y MIXTAS
 
Reacción total de sales: sales neutras
Neutras: todos los átomos de H del ácido son sustituidos por el átomo del metal.
H 2 SO 4+ 2 K(OH) ----------->  K 2 SO 4 + 2 H 2O
Sulfato de Potasio

Reacción parcial de sales: sales ácidas
Ácidas: conserva los átomos de hidrógeno
H 2 SO 4+ K(OH) -----------> K.H.SO 4+ H 2O
Sulfato ácido de Potasio

Reacción parcial de sales: sales básicas
Básicas: neutralización incompleta de un ácido monoprótico con una base polihidróxica
HCL + Mg(OH) 2  -----------> Mg.OH.CL + H2 O
Cloruro básico de magnesio

Reacción total de sales: sales neutra
2HCL + MgCL 2 = MgCL 2 + 2H 2 O
Cloruro neutro de magnesio
 
SALES MIXTAS
Resultan de sustituir los hidrógenos de un ácido polipróptico por átomos de diferentes metales
H 2 SO 4 + NaOH + KOH  ----------->  NaKSO 4 + 2H 2O
Sulfato de Sodio y de Potasio
 
OTRAS SALES
El nitruro de hidrógeno o amoníaco es un gas, al disolverse en agua forma un compuesto denominado hidróxido de amonio.
El hidróxido de amonio reacciona con los ácidos como los demás hidróxidos, dando sales

Tabla de   nomenclatura general de las sales



Fórmula
Nomenclatura
Numeroro de átomos
Numeral de stock
NaCL
Cloruro de sodio
Cloruro de sodio
Cloruro de sodio
AlBr3
Bromuro de aluminio
Tribromuro de aluminio
Bromuro de aluminio
KNO2
Nitrito de potasio
Dioxonitrato de potasio
Nitrato(III) de potasio
NaNO3
Nitrato de sodio
Trioxonitrato de sodio
Nitrato(V) de sodio
CaSO3
Sulfito de calcio
Trioxosulfato de calcio
Sulfato(IV) de calcio
Na2SO4
Sulfato de sodio
Tetraoxosulfato de disodio
Silfato(VI) de sodio
Al2(SO4)3
Sulfato de aluminio
Tetraoxosulfato de dialuminio
Sulfato(VI) de aluminio
LiClO
Hipoclorito de litio
Monoxoclorato de litio
Clorato(I) de litio
Fe(Cl03)3
Clorato férrico
Trioxoclorato de hierro
Clorato(V) de hierro(III)
(NH4)2SO4
Sulfato de amonio
Tetraoxosulfato de diamonio
Sulfato(VI) de amonio
K2MnO4 
Manganato de potasio
Tetraoxomanganato de dipotasio
Manganato(VI) de potasio
NaHSO4
Sufato ácido de sodio
Tetraoxosulfato de hidrógeno y sodio
Sulfato(VI) de hidrógeno y sodio
MgClOH
Cloruro básico de magnesio
Hidroxocloruro de magnesio
Hidroxicloruro de magnesio
CuCO3OH
Carbonato básico de cobre
Hidroxocarbonato de cobre
Hidroxicarbonato de cobre(I)
NaKSO3
Sulfito de sodio y de potasio
Trioxosulfato de sodio y de potasio
Sulfato(IV)de sodio y de potasio



Bibliografias
Libro: Quimica General
Víctor M. Ramírez Regalado
2da edición
 Publicaciones Cultural
 México, 2005